Effects of Temperature, Fish Length, and Exercise on Swimming Performance of Age-0 Flannelmouth Sucker

Author(s):  
David L. Ward ◽  
O. Eugene Maughan ◽  
Scott A. Bonar ◽  
William J. Matter
Biomimetics ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 9 ◽  
Author(s):  
Uchenna E. Ogunka ◽  
Mohsen Daghooghi ◽  
Amir M. Akbarzadeh ◽  
Iman Borazjani

Some anguilliform swimmers such as eels and lampreys swim near the ground, which has been hypothesized to have hydrodynamic benefits. To investigate whether swimming near ground has hydrodynamics benefits, two large-eddy simulations of a self-propelled anguilliform swimmer are carried out—one swimming far away from the ground (free swimming) and the other near the ground, that is, midline at 0.07 of fish length (L) from the ground creating a gap of 0.04 L . Simulations are carried out under similar conditions with both fish starting from rest in a quiescent flow and reaching steady swimming (constant average speed). The numerical results show that both swimmers have similar speed, power consumption, efficiency, and wake structure during steady swimming. This indicates that swimming near the ground with a gap larger than 0.04 L does not improve the swimming performance of anguilliform swimmers when there is no incoming flow, that is, the interaction of the wake with the ground does not improve swimming performance. When there is incoming flow, however, swimming near the ground may help because the flow has lower velocities near the ground.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rachael M. Heuer ◽  
John D. Stieglitz ◽  
Christina Pasparakis ◽  
Ian C. Enochs ◽  
Daniel D. Benetti ◽  
...  

Mahi-mahi (Coryphaena hippurus) are a highly migratory pelagic fish, but little is known about what environmental factors drive their broad distribution. This study examined how temperature influences aerobic scope and swimming performance in mahi. Mahi were acclimated to four temperatures spanning their natural range (20, 24, 28, and 32°C; 5–27 days) and critical swimming speed (Ucrit), metabolic rates, aerobic scope, and optimal swim speed were measured. Aerobic scope and Ucrit were highest in 28°C-acclimated fish. 20°C-acclimated mahi experienced significantly decreased aerobic scope and Ucrit relative to 28°C-acclimated fish (57 and 28% declines, respectively). 32°C-acclimated mahi experienced increased mortality and a significant 23% decline in Ucrit, and a trend for a 26% decline in factorial aerobic scope relative to 28°C-acclimated fish. Absolute aerobic scope showed a similar pattern to factorial aerobic scope. Our results are generally in agreement with previously observed distribution patterns for wild fish. Although thermal performance can vary across life stages, the highest tested swim performance and aerobic scope found in the present study (28°C), aligns with recently observed habitat utilization patterns for wild mahi and could be relevant for climate change predictions.


2002 ◽  
Vol 205 (7) ◽  
pp. 969-980 ◽  
Author(s):  
Kathryn A. Dickson ◽  
Jeanine M. Donley ◽  
Chugey Sepulveda ◽  
Lisa Bhoopat

SUMMARYThe effects of a 6°C difference in water temperature on maximum sustained swimming speed, swimming energetics and swimming kinematics were measured in the chub mackerel Scomber japonicus (Teleostei:Scombridae), a primarily coastal, pelagic predator that inhabits subtropical and temperate transition waters of the Atlantic, Pacific and Indian Oceans. New data for chub mackerel acclimated to 18°C are compared with published data from our laboratory at 24°C. Twelve individuals acclimated to each of two temperatures (15.6-26.3 cm fork length, FL, and 34-179g at 18°C; 14.0-24.7 cm FL and 26-156g at 24°C) swam at a range of speeds in a temperature-controlled Brett-type respirometer, at the respective acclimation temperature. At a given fish size, the maximum speed that S. japonicus was able to maintain for a 30-min period, while swimming steadily using slow, oxidative locomotor muscle (Umax,c),was significantly greater at 24 than at 18°C (52.5-97.5 cm s-1at 18°C and 70-120 cm s-1 at 24°C). At a given speed and fish size, the rate of oxygen consumption(V̇O2) was significantly higher at 24 than at 18°C because of a higher net cost of transport (1073-4617 J km-1 kg-1 at 18°C and 2708-14895 J km-1 kg-1 at 24°C). Standard metabolic rate, calculated by extrapolating the logV̇O2versus swimming speed relationship to zero speed, did not vary significantly with temperature or fish mass (126.4±67.2 mg O2 h-1 kg-1 at 18°C and 143.2±80.3 mg O2 h-1 kg-1 at 24°C; means ±S.D., N=12). Swimming kinematics was quantified from high-speed (120 Hz) video recordings analyzed with a computerized, two-dimensional motion-analysis system. At a given speed and fish size, there were no significant effects of temperature on tail-beat frequency, tail-beat amplitude or stride length, but propulsive wavelength increased significantly with temperature as a result of an increase in propulsive wave velocity. Thus, the main effects of temperature on chub mackerel swimming were increases in both Umax,c and the net cost of swimming at 24°C. Like other fishes, S. japonicus apparently must recruit more slow,oxidative muscle fibers to swim at a given sustainable speed at the lower temperature because of the reduced power output. Thus, the 24°C mackerel reach a higher speed before they must recruit the fast, glycolytic fibers,thereby increasing Umax,c at 24°C. By quantifying in vivo the effects of temperature on the swimming performance of an ectothermic species that is closely related to the endothermic tunas, this study also provides evidence that maintaining the temperature of the slow,oxidative locomotor muscle at 6°C or more above ambient water temperature in tunas should significantly increase sustainable swimming speeds, but also increase the energetic cost of swimming, unless cardiac output limits muscle performance.


Sign in / Sign up

Export Citation Format

Share Document